Reactive transport modeling : Application of the «smart K_d-concept»

S. Britz¹, U. Noseck¹, J. Fricke¹, V. Brendler², M. Stockmann², W. Durner³, S. Iden³, D. Zachmann³, J. Lützenkirchen⁴

Objectives
- Developing better understanding of retardation processes for actinides under varying geochemical conditions in long-term safety assessments of radioactive waste repositories
- First proof of concept of the smart K_d-concept
 - Application of Eu(III) surface complexation parameters (SCPs) in reactive transport models (PhreeqC¹¹)
 - Eu(III) migration through quartz sand columns
- Comparison of surface complexation formalism as applied to batch and column experiments

Approach
- Evaluation of protolysis constants (pK-values) from surface charge (batch titration) data
- Evaluation of log K-values for Eu(III) SCPs (logK-values) from batch sorption data
- Reactive transport modeling of Eu(III) migration through quartz sand columns
 - Determination of transport parameters via STANMOD²
- Application of batch SCPs to predict Eu(III) migration under varying geochemical conditions

Results
- Application of diffuse double layer model (DDL) to determine quartz protolysis constants from titration literature data³
 - DDL pK -8.0 ± 0.1 SOH -> SO⁻ + H⁺
 - Stern model⁴ pK -7.5 SOH -> SO⁻ + H⁺
 - logKNa -9.4 SO⁻ + Na⁺ -> SONa
- Quartz mineral properties
 - Specific surface area (SSABET) 0.08 m² g⁻¹
 - Surface site density⁴ (SSD) 4.6 sites nm⁻²

Future perspectives
- Further proof-of-concept of the smart K_d-approach via
 - Evaluation of batch SCPs for orthoclase Eu(III) and muscovite Eu(III) from batch and titration experiments
 - Application of batch SCPs to reactive transport of Eu(III) through muscovite and orthoclase columns
 - Application of the smart K_d-concept to simulate Eu(III) transport through a synthetic and natural sediment
 - Continuous improvement of developed surface complexation models via state of the art spectroscopic Eu(III) surface complexation and speciation data
 - e.g. evaluation of Eu-sulfate solution and surface speciation

Acknowledgements
This work is funded by the Federal Ministry of Economics and Technology of Germany under grant No. FKZ 02E11072A & B.

¹Karlsruhe Institute of Technology
²University of Technology Braunschweig
³Technische Universität Braunschweig
⁴University of Technology Ilmenau